Siemens SIMIT 例程对象开发计划书

例程名称	分类站
版本	1.00
开发单位	江苏省南京市三江学院电气系
联系人姓名	吉顺平
电话	13770985327
E-mail	jishunping@yahoo.com.cn

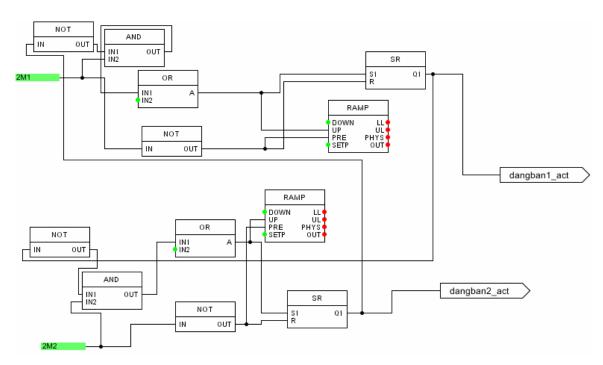
1. SIMIT例程简介

该例程主要仿真分类站功能,不同的工件在传送带上依次向前,能够检测工件的有无,也能通过颜色区分不同的工件进行分类。

2. SIMIT例程功能描述

仿真开始,QB0.0=1,传送带循环转动。每次可手动放置一个工件,红色、黄色或者蓝色,分别可以通过手动放置按钮实现。当放置一个工件后,检测到传送带上有工件,检测工作指示灯1B1亮,工件通过以后,灯灭。如果放置的工件为红色,通过指示灯2B1时,灯亮,通过以后灯灭。如果放置的工件为黄色,通过指示灯3B1时,灯亮,通过以后灯灭。QB0.1=1时,1号挡板工作,将工件推入1号挡板对应的槽内。QB0.2=1时,2号挡板工作,将工件推入2号挡板对应的槽内。1号、2号挡板不会同时工作。如果1号、2号挡板都不工作,则工件将被固定挡板推入最后的槽内。以此实现工件的分类。

3. SIMIT对象与PLC的输入和输出接口


表1 数字量输入地址定义

Symbol	Address	Data type	Comment
1B1	10.0	BOOL	传送带入口红外对射传感器,无工件为1
2B1	10.1	BOOL	颜色检验,是否为红色,是红色为1
3B1	10.2	BOOL	是否为金属,是金属为1

表2 数字量输出地址定义

Symbol	Address	Data type	Comment
1M1	Q0.0	BOOL	皮带电机,转动=1,不转动=0
2M1	Q0.1	BOOL	第一块挡板,=1,挡住红色工件
2M2	Q0.2	BOOL	第二块挡板,=1,挡住黑色工件

4. 利用SIMIT对例程建模

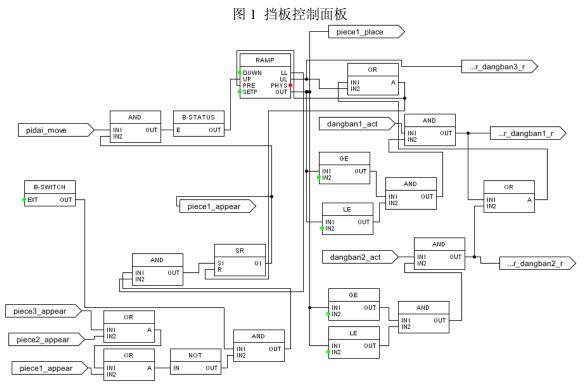


图 2 工件 1 控制面板

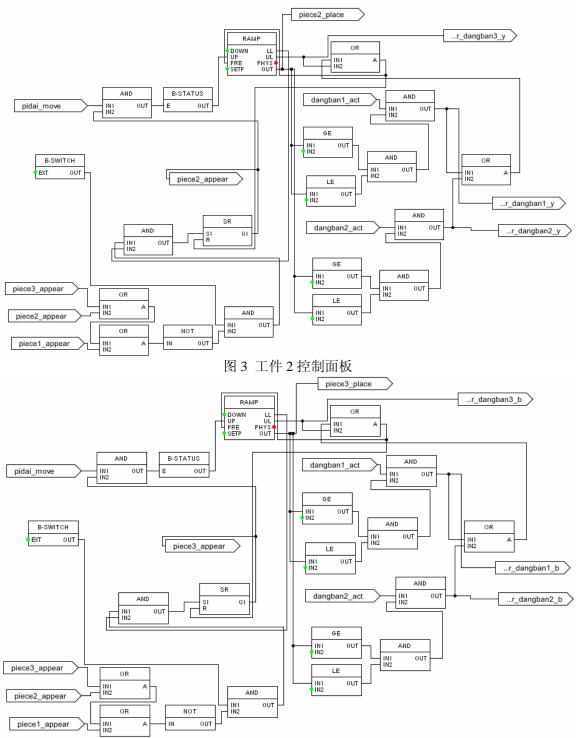


图 4 工件 3 控制面板

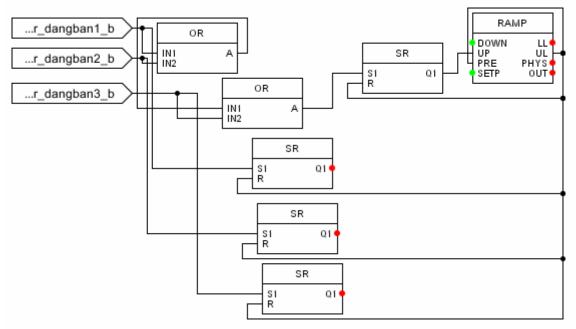


图 5 蓝色工件滑动控制面板

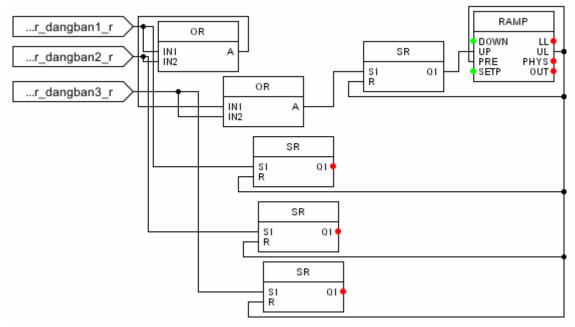


图 6 红色工件滑动控制面板

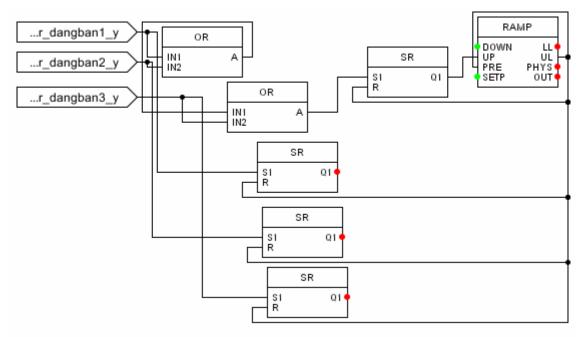


图 7 黄色工件滑动控制面板

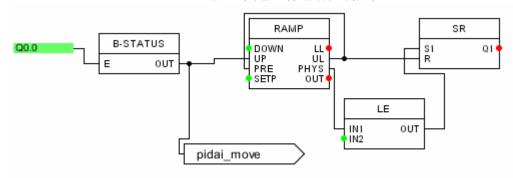


图 8 皮带控制面板

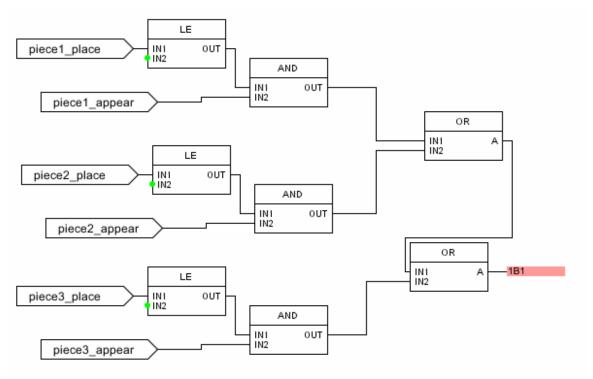


图 9 传感器 1 控制面板

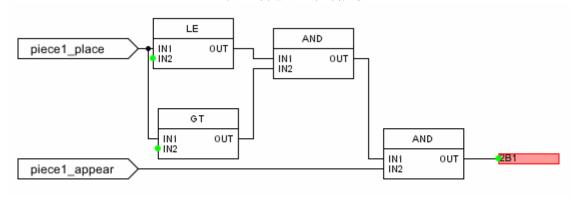


图 10 传感器 2 控制面板

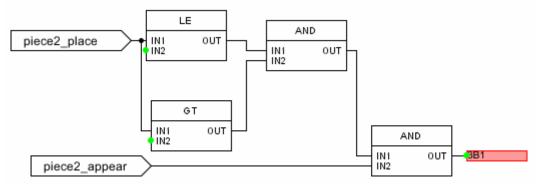


图 11 传感器 3 控制面板

5. 利用SIMIT设计例程操作界面

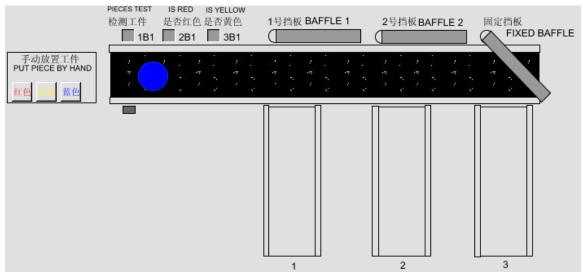


图 11 分类站 SIMIT 例程操作界面

左侧小方框内为手动放置工件控制面板,黄色红色蓝色分别放置相应的工件。右侧为传送带,每次放置一个工件,当有工件时,检测工件指示灯亮,后面两个指示灯分别检测工件是否为红色和黄色,黑色传送带运行挡板负责根据工件颜色分类,1号挡板把工件推到1号槽内,2号挡板把工件推到2号槽内,固定挡板把剩下的工件挡到3号槽内

6. SIMIT对象的PLC控制程序开发

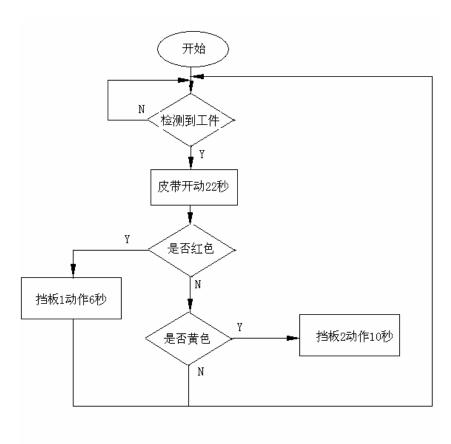


图12 分类站PLC程序流程图

以下为分类站PLC控制程序

OB1 : "Main Program Sweep (Cycle)"

```
Comment:
```

Network 1:皮带电机,转动=1,不转动=0

```
Comment:
```

Network 2: 第1块挡板,=1,挡住红色工件

Comment:

Wetwork 3: 第2块挡板,=1,挡住黄色工件

```
"3B1"
M10.2
T3
"2M2"

| | (P)
| (T3)
| (SD)
| (SD)
| (ST#10S)
```

实验2 分类站控制

一、实验目的

- 1、了解分类站控制的原理,特点。
- 2、掌握分类站控制的设计流程。
- 3、掌握分类站控制的控制策略优化与控制参数调整方法。

二、实验设备

SIMIT软件、Step7软件、计算机。

三、实验原理与介绍

1、分类站控制原理,设计,控制策略选择,参数调节方法介绍 分类站主要实现对不同颜色的工件进行分离的功能,每次进行一个工件的分类,

将红色、黄色和蓝色的工件分类到不同的槽内。其设计第一是传送带的设计,传送

带要循环旋转。其次是三种不同颜色的工件的显示,以及在传送带上要随着传送带一起前进,到达挡板的位置要滑进槽内,工件可以进入任意一个滑槽内。

2、分类站控制设计需要使用的I/O清单

Symbol	Address	Data type	Comment
1B1	10.0	BOOL	传送带入口红外对射传感器,无工件为1
2B1	10.1	BOOL	颜色检验,是否为红色,是红色为1
3B1	10.2	BOOL	是否为金属,是金属为1
1M1	Q0.0	BOOL	皮带电机,转动=1,不转动=0
2M1	Q0.1	BOOL	第一块挡板,=1,挡住红色工件
2M2	Q0.2	BOOL	第二块挡板,=1,挡住黑色工件

四、实验要求

- 1、通过实验要基本了解分类站控制,
- 2、通过仿真掌握控制策略的选择与优化的方法,
- 3、掌握参数调节方法,
- 3、使用SIMIT实现仿真,验证实验结果,得出实验结论。

五、实验内容与步骤

- 1、启动SIMIT SCE,建立一个新项目,设计相应的IO参数
- 表1 数字量输入地址定义
- 表2 数字量输出地址定义
- 表3 模拟量输入地址定义
- 表4 模拟量输出地址定义
 - 2、在SIMIT SCE中添加新的平面图,插入面向过程的功能。 设计
 - 3、创建SIMIT操作窗口界面,插入连接操作及显示元素,设计对象动作动画。 界面设计运动规则,
 - 4、启动SIMATIC管理器, 创建PLC程序。

为更好实现控制:程序设计思想代码编写5、启动PLCSIM并且载入仿真程序, 启动仿真程序。

- 6、启动SIMIT SCE, 进行对象仿真。
- 7、观察实验结果,如不理想,优化策略,修改参数以得到更好的实验结果。 优化过程参数调整过程

六、思考问题

实验中碰到的问题,解决思路,对该实验的建议等,以便于引导更深一步的思考。

七、实验结果提交

- 1、绘制窗口界面。
- 2、系统IO清单。
- 3、STEP7程序
- 4、实验过程中出现的问题与解决方法。
- 5、实现结果与结论。