内容简介

本书从实际工程应用和便于教学需要出发，介绍和讲解了继电接触式控制系统的控制原理、设计方法和实际应用。和其他同类的教材相比，本书主要有以下特点：

（1）介绍了新型器件，讲解了软启动器和变频器的使用；

（2）对传统的电气控制系统的内容进行了较大幅度的删节，给出了电气控制线路和可编程序控制器程序的“简单设计法”；

（3）系统介绍了和讲解了最新版本的 SIEMENS S7200 CPU22*（V1.21）系列可编程序控制器的原理和应用，并给出了大量实例并讲解其基本指令的用法和功能图（SFC）的编程；

（4）对 S7200 PLC 的功能指令和通信功能进行了详细的讲解，并简单介绍了 S7200 PLC 新模块的特点；

（5）附有思考题、练习题和实验指导书；

（6）介绍了 S7200 可编程序控制器上机编程软件的使用；

（7）附有作者精心挑选并经修改过的 S7200 PLC 资料速查表。

本书是作者在自己最近出版的同类教材的基础上精心修订和编写而成的，相信它会是一本值得大家使用的书。本书可作为大专院校、电大和业余大学的自动控制、电气技术、机电一体化及相关专业的“电气控制及可编程序控制器”或类似课程的教材，也可供有关工程技术人员参考使用，同时它也是广大从事和电气控制技术专业有关的电工和技术人员的一本很好的自学教材。

目录

第一章 常用低压电器

1.1 电器的基本知识3

1.1.1 电器的定义和分类3

1.1.2 电磁式低压电器的基本结构和工作原理4

1.2 接触器10

1.2.1 接触器的用途及分类10

1.2.2 接触器的结构及工作原理10

1.2.3 接触器的技术参数11

1.2.4 接触器的选择12

1.3 继电器13

1.3.1 电磁式继电器13

1.3.2 热继电器15
1.3.3 时间继电器 18
1.3.4 速度继电器 19
1.3.5 温度继电器 20
目录
1.3.6 液位继电器 21
1.3.7 固态继电器 21
1.4 开关电器 23
1.4.1 刀开关 23
1.4.2 低压断路器 23
1.5 熔断器 26
1.5.1 熔断器的结构和分类 26
1.5.2 熔断器的保护特性 27
1.5.3 熔断器的技术参数 28
1.5.4 熔断器的选择 28
1.6 主令电器 29
1.6.1 控制按钮 29
1.6.2 转换开关 31
1.6.3 行程开关 32
1.6.4 接近开关 32
1.6.5 光电开关 33
1.6.6 指示灯 34
本章小结 35
思考题与练习题 35
第二章 电气控制线路基础
2.1 电气控制线路图的图形、文字符号及绘制原则 37
2.1.1 常用电气图形符号和文字符号 37
2.1.2 电气控制线路图的绘制原则 41
2.2 三相笼型异步电动机的基本控制线路 43
2.2.1 全压启动控制线路 43
2.2.2 正反转控制线路 44
2.2.3 点动控制线路 45
2.2.4 多点控制线路 46
2.2.5 顺序控制线路 46
2.2.6 自动循环控制线路 47
2.3 三相笼型异步电动机降压启动控制线路 48
2.3.1 星形—三角形降压启动控制线路 48
2.3.2 自耦变压器降压启动控制线路 49
2.3.3 软启动器及其使用 50
2.4 三相笼型异步电动机制动控制线路 56
2.4.1 反接制动控制线路 56
2.4.2 能耗制动控制线路 58
2.5 三相笼型异步电动机速度控制线路 61
2.5.1 基本概念 61
第五章 PLC 的基本指令及程序设计
5.1 PLC 的基本逻辑指令及举例110
  5.1.1 逻辑取及线圈驱动指令110
  5.1.2 触点串联指令111
  5.1.3 触点并联指令111
  5.1.4 串联电路块的并联连接指令112
  5.1.5 并联电路块的串联连接指令112
  5.1.6 置位、复位指令113
  5.1.7 RS 触发器指令114
  5.1.8 立即指令115
  5.1.9 边沿脉冲指令116
  5.1.10 逻辑堆栈操作指令117
  5.1.11 定时器119
  5.1.12 计数器123
  5.1.13 比较指令126
  5.1.14 NOT 及 NOP 指令128
5.2 程序控制指令128
  5.2.1 结束及暂停指令128
  5.2.2 看门狗指令129
  5.2.3 跳转及标号指令130
  5.2.4 循环指令131
  5.2.5 子程序132
  5.2.6 与 ENO 指令135
5.3 PLC 初步编程指导136
  5.3.1 梯形图编程的基本规则136
  5.3.2 LAD 和 STL 编程形式的区别137
5.4 典型的简单电路编程138
  5.4.1 延时脉冲产生电路138
  5.4.2 瞬时接通/延时断开电路139
  5.4.3 延时接通/延时断开电路139
  5.4.4 脉冲宽度可控制电路140
  5.4.5 计数器的扩展141
  5.4.6 长定时电路141
  5.4.7 闪烁电路142
  5.4.8 报警电路143
5.5 PLC 程序的简单设计法及应用举例145
  5.5.1 PLC 程序的简单设计法145
  5.5.2 应用举例146
本章小结150
思考题与练习题150
第六章 S7200 PLC 顺序控制指令及应用
6.1 功能图的产生及基本概念153
  6.1.1 功能图的产生153
  6.1.2 功能图的基本概念153
6.1.3 功能图的构成规则154
6.2 顺序控制指令155
6.2.1 顺序控制指令介绍155
6.2.2 举例说明155
6.2.3 使用说明156
6.3 功能图的主要类型157
6.3.1 单流程157
6.3.2 可选择的分支和联接157
6.3.3 并行分支和联接158
6.3.4 跳转和循环160
6.4 顺序控制指令应用举例161
6.4.1 选择和循环电路举例161
6.4.2 并行分支和联接电路举例165
6.4.3 选择和跳转电路举例168
本章小结171
思考题与练习题171
第七章 S7200 PLC 的功能指令
7.1 传送、移位和填充指令173
7.1.1 传送类指令173
7.1.2 移位与循环指令174
7.1.3 字节交换指令177
7.1.4 填充指令177
7.2 运算和数学指令178
7.2.1 加法指令178
7.2.2 减法指令178
7.2.3 乘法指令178
7.2.4 除法指令179
7.2.5 数学函数指令181
7.2.6 增/减指令183
7.2.7 逻辑运算指令184
7.3 表功能指令186
7.4 转换指令189
7.4.1 数据类型转换指令189
7.4.2 编码和译码指令192
7.4.3 段码指令192
7.4.4 ASCII 码转换指令193
7.4.5 字符串转换指令196
7.5 字符串指令197
7.6 时钟指令200
7.7 中断201
7.7.1 几个基本概念202
7.7.2 中断指令204
7.7.3 中断程序205
7.8 高速计数器指令206
7.8.1 高速计数器介绍206
7.8.2 高速计数器指令208
7.8.3 高速计数器的使用方法208
7.9 高速脉冲输出指令212
7.9.1 几个基本概念212
7.9.2 高速脉冲指令及特殊寄存器212
7.9.3 PTO 的使用214
7.9.4 PWM 的使用218
7.10 PID 回路指令221
7.10.1 PID 算法221
7.10.2 PID 回路指令及使用221
本章小结225
练习题226
第八章 PLC 的网络通信技术及应用
8.1 通信网络的基础知识227
8.1.1 数据通信方式227
8.1.2 网络概述230
8.2 S7200 的通信与网络231
8.2.1 S7 系列PLC 网络层次的结构231
8.2.2 S7200 PLC 网络的通信协议232
8.2.3 网络配置实例236
8.2.4 网络部件238
8.3 S7200 通信指令239
8.3.1 网络读/网络写指令239
8.3.2 发送与接收指令242
8.3.3 USS 通信指令247
8.4 S7200 的通信扩展模块248
8.4.1 EM241 调制解调器模块248
8.4.2 CP2431 工业以太网通信处理器模块248
本章小结249
思考题与练习题249
第九章 现代 PLC 控制系统综合设计实例
9.1 PLC 控制系统设计步骤及内容250
9.1.1 分析评估及控制任务…251
9.1.2 PLC 的选型251
9.1.3 I/O 地址分配252
9.1.4 系统设计252
9.1.5 系统调试252
9.2 双恒压无塔供水控制系统设计253
9.2.1 工艺过程253
9.2.2 系统控制要求254
9.2.3 控制系统的I/O 点及地址分配254
9.2.4 PLC 系统选型255
9.2.5 电气控制系统原理图255
9.2.6 系统程序设计 258
9.3 薄刀式分切压痕机控制系统 264
  9.3.1 工艺过程 264
  9.3.2 系统控制要求 264
  9.3.3 控制系统的I/O 点及地址分配 265
  9.3.4 PLC 系统选型 265
  9.3.5 电气控制系统原理图 265
  9.3.6 系统程序设计 267
9.4 PLC 在工程应用中要注意的一些实际问题 272
  9.4.1 PLC 的安装 272
  9.4.2 电源的设计 272
  9.4.3 系统的接地 273
  9.4.4 电缆设计与铺设 274
  9.4.5 PLC 输出端的保护 274
本章小结 275
思考题与练习题 275
第十章 编程软件的使用
10.1 编程软件安装 276
  10.1.1 系统要求 276
  10.1.2 软件安装 276
  10.1.3 硬件连接 277
  10.1.4 参数设置 277
  10.1.5 在线联系 278
  10.1.6 建立、修改 PLC 通信参数 278
10.2 软件功能 278
  10.2.1 基本功能 278
  10.2.2 界面 279
  10.2.3 各部分功能 279
  10.2.4 系统组态 281
10.3 编程 281
  10.3.1 程序文件操作 281
  10.3.2 编辑程序 282
10.4 调试及运行监控 286
  10.4.1 选择扫描次数 286
  10.4.2 状态图表监控 286
  10.4.3 运行模式下的编辑 287
  10.4.4 程序监视 288
本章小结 289

附录
附录A 实验指导书
实验一异步电动机可逆运行实验 290
实验二 S7200 PLC 编程软件使用实验 291
实验三 抢答器程序设计实验 291
实验四 人行道按钮控制交通灯程序设计实验 292
实验五 水位控制程序设计实验 294
附录 BS7200 PLC 快速参考信息表 B1 S7200 PLC 的 CPU 规范 295
表 B2 S7200 PLC 的 CPU 输入规范 296
表 B3 S7200 PLC 的 CPU 输出规范 297
表 B4 S7200 PLC 的 CPU 存储器范围和特性总汇 298
表 B5 S7200 PLC [CPU (V1.21)] 指令系统速查表 299
表 B6 常用特殊继电器 SM0 和 SM1 的位信息 301
图 B1 CPU 224 外围典型接线图 302