2007年西门子杯 全国大学生过程控制技能挑战赛 控制方案设计

参赛队伍编号14

目 录

— ,	控制系统分析	1
	自动控制系统方案的确定	
三、	自控系统方案设计	6
	1、反应升温速度控制	<i>6</i>
	2. 反应保温温度控制	7
	3、反应器压力安全控制	9
	4、主产物产率控制	10
	5、顺序控制系统	10
	6、搅拌釜式反应器整个系统 PI&D 图	15
五、	自控方案的实施设计	16
	1、硬件软件配置	16
	2、I/O 模块接线图	18
	3、控制器的选型	19
六、	结束语	21

带搅拌釜式反应器系统控制方案

摘要:在 SIEMENS 公司的 SIMATIC PCS7 体系结构下,对过程工业常见的间歇带搅拌 釜式反应器进行分析,提出了与温度、压力及组分控制相应的控制要求和方案. 尤其对 温度和压力的控制是整个过程安全的关键,本文采用模糊控制和 PID 控制相结合的方法 进行控制的思想.

[关键词]: 间歇反应 温度 压力 模糊控制和 PID 控制 安全和通信

引言:

在工业生产过程中,反应釜是一种十分常见的反应容器,过程的特征参量一般为温度、压力和浓度等,并且反应过程表现出非线性和时滞性,因此要对这些参量进行控制使系统稳定,同时也是生产质量和安全的保证。

一、控制系统分析

被控对象为过程工业常见的带搅拌釜式反应器系统,属于间歇反应过程。其工艺流程图如图 1 所示

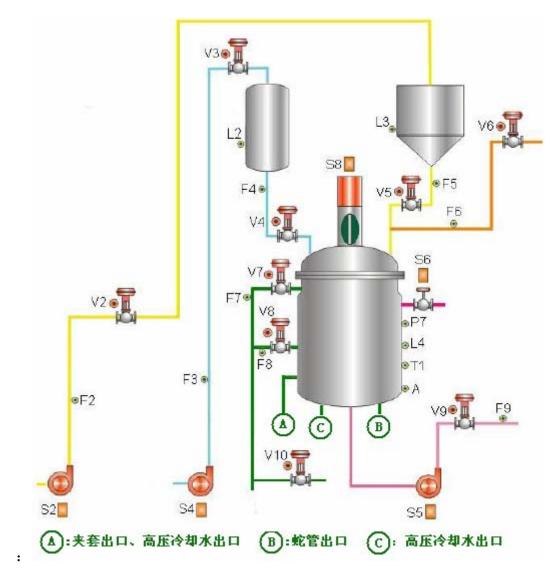


图 1 间歇反应工艺流程图

工艺设备包括: 两台高位计量罐, 其中 A 物料计量罐液位 L2,入口阀 V3,出口阀 V4, A 物料泵及泵电机开关 S4; B 物料计量罐液位 L3,入口阀 V2,出口阀 V5, B 物料泵及泵电机开关 S2。C 物料下料流量 F6,C 物料下料阀 V6。带搅拌器的釜式反应器,反应器内主产物浓度 A,反应温度 T1,液位 L4,反应物出口流量 F9,出口阀 V9,出口泵及出口泵开关 S5(开关)。反应器蛇管冷却水入口流量 F7,蛇管冷却水阀 V7;反应器夹套冷却水入口流量 F8,夹套冷却水阀 V8;反应器夹套加热蒸汽阀 S6(开关)。反应器放空阀 V5,反应器搅拌电机开关 S8,高压冷却水阀 V10。

测控条件一览表:

1.	L2	A物料计量罐液位	最高 640mm
2.	L3	B物料计量罐液位	最高 1000mm
3.	L4	反应器液位	最高 1600mm
4.	T1	反应温度	$^{\circ}$ C
5.	A	反应器内主产物浓度	kg
6.	P7	反应压力	MPa (绝压)
7.	F2	B物料上料流量	最大 8.1t/h
8.	F3	A物料上料流量	最大 9.72t/h
9.	F4	A物料下料流量	最大 9.05t/h
10.	F5	B物料下料流量	最大 8.68t/h
11.	F6	C物料下料流量	最大 42.77t/h
12.	F7	反应器蛇管冷却水入口流量	最大 42.84t/h
13.	F8	反应器夹套冷却水入口流量	最大 72.84t/h
14.	F9	反应物出口流量	最大 46.44t/h
设名	备参数一	览表(四种阀门特性任选):	
1.	S2	B物料上料泵开关	
2.	S4	A 物料上料泵开关	
3.	S5	反应物出口泵开关	
4.	S6	反应器夹套加热蒸汽阀(开	关阀)
5.	S8	反应器搅拌电机开关	
6.	V2	B物料上料阀	
7.	V3	A物料上料阀	
8.	V4	A物料下料阀	
9.	V5	B物料下料阀	
10.	V6	C物料下料阀	
11.	V7	反应器蛇管冷却水入口阀	
12.	V8	反应器夹套冷却水入口阀	
13.	V9	反应物出料阀	

14. V10 高压水入口阀

本间歇反应过程包括

- (1) 备料工序(不包括在本次考题范围内)
- (2) 缩合反应工序

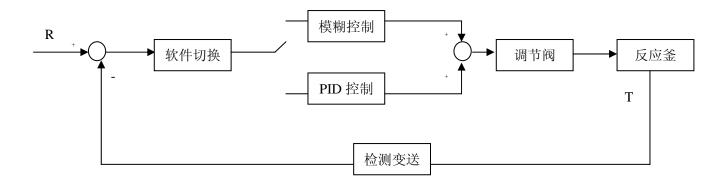
缩合工序历经下料、升温、保温、出料及反应釜清洗阶段。需根据间歇反应过程动力学特性,总结出最佳操作方法。即对反应升温速度、反应保温温度、主产物产率和反应器压力安全进行控制系统的设计及顺序控制系统。

二、自动控制系统方案的确定

根据对反应釜的特性分析可知,反应釜的温度对化学反应有极大的影响。事实上作为被控对象的反应釜的温度与一般的工业对象相比,主要有以下几方面的特点。

1)时滞性很大。对间歇式反应釜,一般在反应之初往夹套中通以热蒸汽使釜内达到所需的温度。在反应过程中伴有很强的热效应,导致反应釜内温度急剧升高,此后在夹套中通以冷却水带走多余的热量,以使釜内温度降低。但由于反应釜内与外界热交换主要依靠反应釜的间壁进行热传导,内壁对整个釜内加热也需要一定的时间,所以导致系统表现出很大的时滞效应。

2)时变性。反应釜内的温控特性主要取决于釜内化学反应的激烈程度,而整个生产过程从起始升温、中间恒温到最后降温,对象具有明显的时变性。并且,就某一个具体的阶段而言,由于化学反应的速度不稳定,导致过程的增益、惯性时间和纯滞后也会发生相应的变化。


3)测量环境恶劣,参数测量困难。要保证一个控制系统的准确性,首先必须保、证 参数测量的准确性。化工生产多处于恶劣的工业环境之中,现场往往存在大量的电磁波 和交、直流干扰等,对整个系统的影响很大。所以,采取必要的软、硬件措施保证测量 精度,也是控制器设计中要解决的一个问题。

4)非线性。对于一个温度过程系统,都并存着导热、对流和辐射三种形式的传热,只是在不同的阶段各种传热形式所占的比例不同。事实上,只有一维导热可以看作是线性的,辐射热量是绝对问题的四次方函数,对流传热受多种因素的影响,一般也是非线

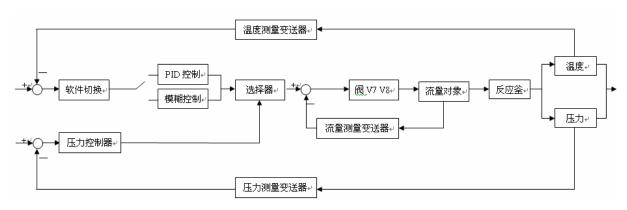
性的。在整个温区内,被控对象的动态参数随着温度的变化而变化,在工作点附近的小温度范围内,其动态特性可以看成近似线性的。

针对被控对象的上述特点,应选择合理的控制方案,针对被控对象的时变效应和大时滞效应,应综合考虑系统的鲁棒性和快速性的要求。提高温度测量的精度和测量稳定性。最终设计和开发出可靠性、稳定性好,系统的性价比高的控制器。

传统的反应釜过程控制器多采用 PID 控制算法,它的控制原理简单、实现方便、参数易于调整。但是,由于反应釜控制对象具有非线性、时变、大时滞等特点,过程模型难以确定,参数整定往往比较困难, 因此,针对反应釜温控对象的特性,本方案采用模糊控制算法与传统的 PID 算法相结合,使系统既具有模糊控制灵活而适应性强的优点,又具有 PID 控制稳态精度高的特点,使被控变量具有良好的动态和静态特性。具体做法是:根据设定值与测量值之间的误差大小,分段采取不同的控制算法。当温差较小时,采用模糊控制算法,使系统具有良好的动态性能;在温差接近很小接近零时,采用 PID 控制,使系统在取得较好的动态性能下,达到期望的稳态性能。控制原理图如下:

在升温阶段,对系统的精度要求不是很大,控制器的首要目的是使误差尽快的减小。当差值逐渐减小到某一值时,逐步关小蒸汽阀门,即采取常规 PID 控制。当快要接近设定温度时,完全关闭蒸汽阀门。由于反应釜有较大的时滞且反应放热,停止加热后釜温依然会上升。此时,开启冷剂阀门,即切换到恒温段控制。恒温段是整个工艺的关键,高精度模糊控制器的实现较为困难,不但建立精确的规则库相当困难,而且过细的控制规则反而容易使控制量变化太大而出现超调。所以当误差很小的时候,可采用 PID 控制。保证温度以 0.1~0.2℃/s 的速率上升。反应釜温度和压力是确保反应安全的关键参数,所以必须根据温度和压力的变化来控制反应的速率。

按照以上要求设计各个环节,同时还设计了顺序开车自动控制单元,使开车自动化,


并稳步进行,避免人为因素的干扰。

三、自控系统方案设计

1、反应升温速度控制

在反应停留时间相同、催化剂量相同的条件下,反应的转化率由反应温度所决定。 控制反应温度的主要手段是夹套冷却水的流量 F8 及蛇管冷却水流量 F7。当温度 T1 上 升至 45℃左右应停止加热,关闭夹套蒸汽加热阀 S6,并逐渐靠自身反应的放热效应不 断加快反应速度。反应釜温度 T1 上升的速率在 0.1~0.2℃/s 以内,此时压力不能维持过 高,为使主反应充分进行,并尽量减弱副反应,应使反应温度维持在 121℃(或压力维 持再 0.69Mpa 左右)。但压力维持过高,将会报警。因此要监控压力的变化,温度和压 力共同控制来确保反应安全。

升温控制方框图如下:

被控变量: T1、P7

操作变量: V8、V7

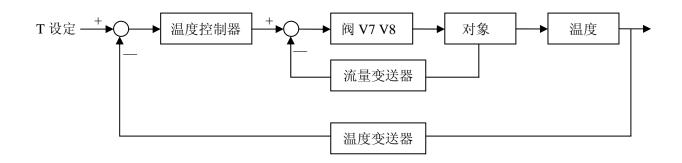
阀门特性: V8、V7 为气闭式(从安全角度考虑,在无信号输入的情况下保证冷却作用,避免温度超限),线性阀反应升温速度控制工作原理具体代码示例如下(以 pcs7 的 sc1 语言为例)。

FUNCTION BLOCK FB999

//静态变量定义

VAR

TEMPERATURE: REAL:=121:


```
END VAR
//输入变量定义
VAR INPUT
IN1:REAL:=0;
END_VAR
//输出变量定义
VAR OUTPUT
OUT1:REAL:=0;
OUT2:REAL:=0;
//主程序
BEGIN
IF (IN1< 121) THEN
    OUT1:=0;
ELSE
    IF((IN1-TEMPERATURE)>0.1) THEN //升温速率大于 0.1, 信号采集间隔为一秒
         OUT1:=OUT1+1://逐步开大 v8、V7 阀
ELSE
    IF ((IN1-TEMPERATURE) < 0.0) THEN
               OUT1 := OUT1 - 0.5;
    END IF;
 END IF;
END IF;
TEMPERATURE:=IN1;//将上一次采集的温度保存起来
END_FUNCTION_BLOCK
本文中其他控制原理基本相同,不再赘述。
```

2. 反应保温温度控制

如果控制合适,反应历经剧烈阶段之后,压力 P、温度 T 会迅速下降。此时应逐步关小冷却水阀 V8 和 V7,使反应釜温度保持在 120 C (压力保持在 0.68~0.70Mpa 左右),

不断调整直至全部关闭 V8 和 V7。当关闭 V8 和 V7 后出现压力下降时,可适当打开夹套蒸汽加热阀 S6,使反应釜温度始终保持在 120℃ (压力保持在 0.68~0.70Mpa) 5~10分钟 (实际为 2~3 小时)。保温之目的在于使反应尽可能充分地进行,以便达到尽可能高的主产物产率。

保温温度控制方框图如下:

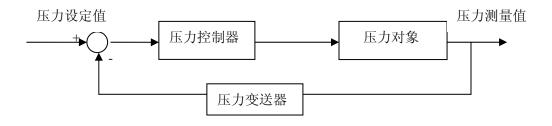
被控变量: T1

操作变量: V8、V7

阀门特性: V8、V7 为气闭式

恒温阶段是保证高主产物产率的关键,由于误差很小,故采用了 PID 控制器。但对其算法进行了改进。采用一种不完全微分的 PID 算法,这种方法是在标准 PID 算法的微分环节上加上一个一阶惯性环节。它以克服完全微分的缺点。其 PID 参数整定仍可用连续 PID 控制器的参数整定方法。

具体方法是:首先根据经验参数值设定 PID 的各参数,然后投入闭环运行。然后根据各参数对系统响应的影响,反复凑试各参数,观察曲线的变化规律,最终得到满意的响应曲线,从而得到最终的各个参数。对于温度控制,PID 各参数的经验值范围为 Kp: 1.6~5 Ti: 3~10min Td: 0.5~3min. 具体凑试步骤如下:


- (1)先调比例:将 Kp 值从小变大,并观察相应的响应曲线,直至得到响应快、超调量小的曲线。
- (2)再调积分:先取较大的 Ti 值,并将上步所得到 Kp 值略微减小,然后逐步减小 Ti,使系统在保持良好的动态特性的情况下,消除静差。根据响应曲线,反复修改 Kp 和 Ti.

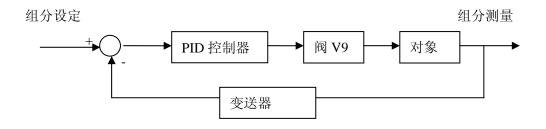
(3)最后调微分:先取 Td=0, 然后逐步调大 Td 值, 同时适当地改变 Kp 和 Ti 值, 逐步调试, 最终得到满意的响应曲线, 即可得整定后的各参数。

3、反应器压力安全控制

为保证反应安全,需要对压力进行安全控制系统的设计。压力高限报警为 0.8MPa。如果反应釜压力 P7 上升过快,已将 V8 和 V7 开到最大,仍压制不住压力的上升,可迅速打开高压水阀门 V10,进行强制冷却。如果开启高压水泵后仍无法压制反应,当压力继续上升至 0.83Mpa(反应温度超过 130℃)以上时,应立刻关闭反应釜搅拌电机开关 S8。此时物料会因密度不同而分层,反应速度会减缓,如果强制冷却及停止搅拌奏效,一旦压力出现下降趋势,应关闭 V10,同时开启反应釜搅拌电机开关 S8。如果操作不按规程进行,特别是前期加热速率过猛,加热时间过长,冷却又不及时,反应可能进入无法控制的状态。即使采取了第 7、第 8 项措施还控制不住反应压力,当压力超过 1.20Mpa 已属危险超压状态,将会再次报警扣分。此时应迅速打开放空阀 V5(代替),强行泄放反应釜压力。由于打开放空阀会使部分 A 物料蒸汽散失(当然也污染大气),所以压力一旦有所下降,应立即关闭 V5,若关闭 V5 压力仍上升,可反复数次。需要指出,A 物料的散失会直接影响主产物产率。如果第 7、第 8、第 9 项三种应急措施都不能见效,反应器压力超过 1.60Mpa,将被认定为反应器爆炸事故。此时紧急事故报警闪光,反应处于冻结状态。

反应器压力安全控制方框图如下:

被控变量: P7


操作变量: V8、V7、V10、放空阀 V5(代替)

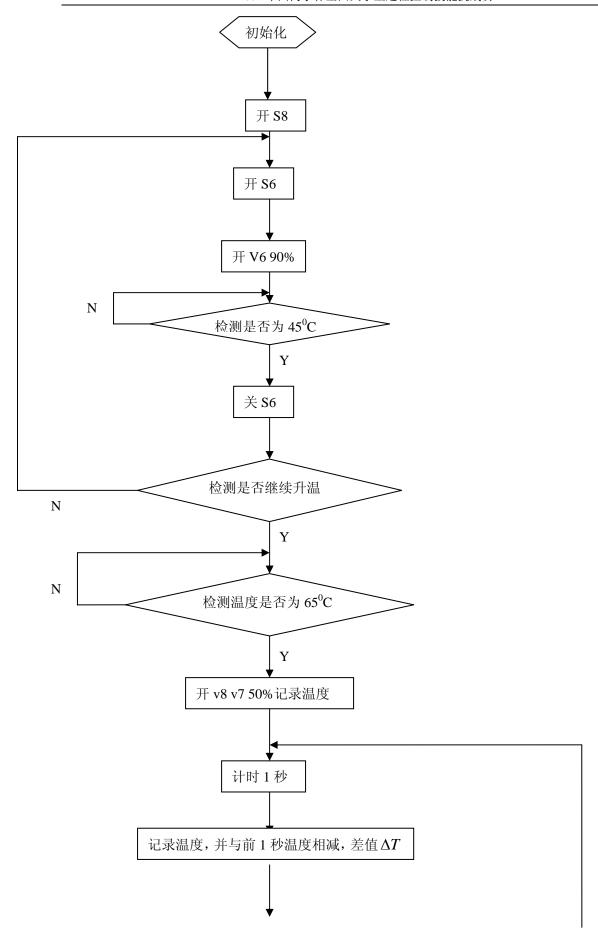
阀门特性:均为气闭式

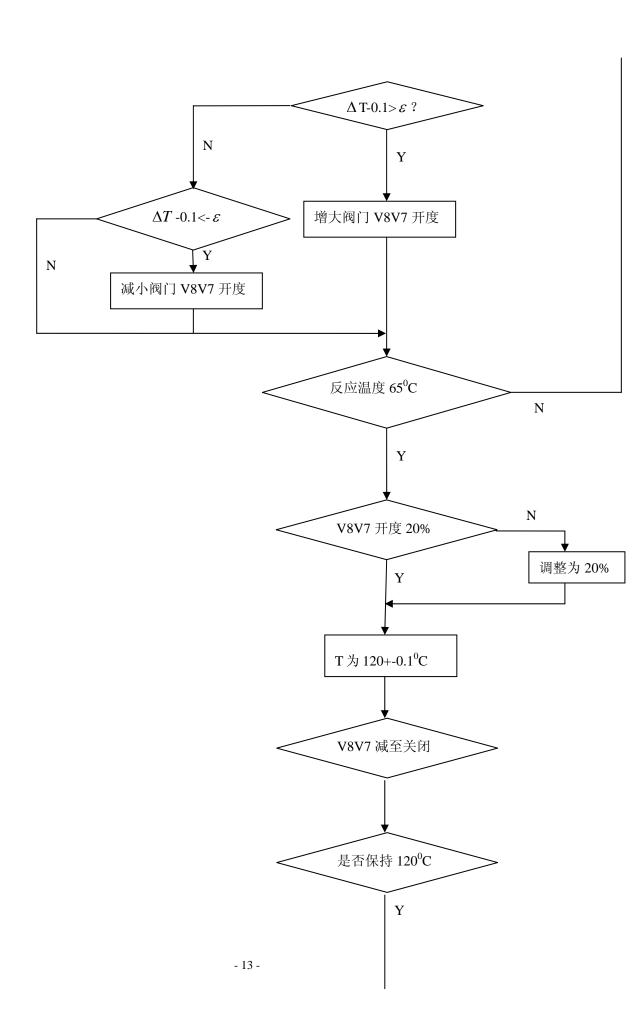
4、主产物产率控制

为得到一定的转化率的产品,要求对反应器最终产物的组分进行控制。完成保温后,即可进入出料及反应釜清洗阶段。首先打开放空阀 V5 约 10 秒 (实际为 2~5 分钟),放掉釜内残存的可燃气体关闭放空阀 V5 开出料泵 S5,出料阀 V9,观察反应釜液位 L4 逐渐下降,当液位下降至 0.0m 时,关闭 S5 和 V9。,

组分控制方框图如下:

被控变量: L4

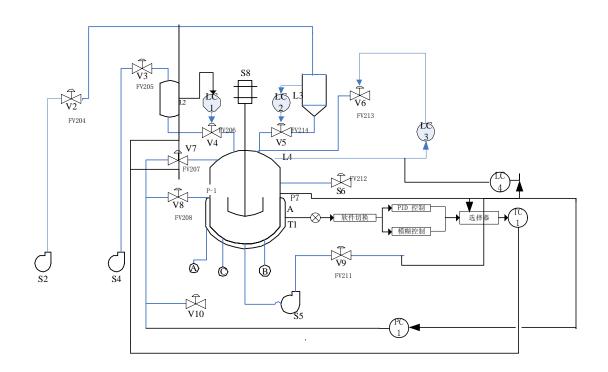

操作变量: V9


阀门特性: 为气开式 线形阀


反应主产物 D 的产率主要受到升温速度、保温时间与温度的影响。(注产率无法在线采集。)

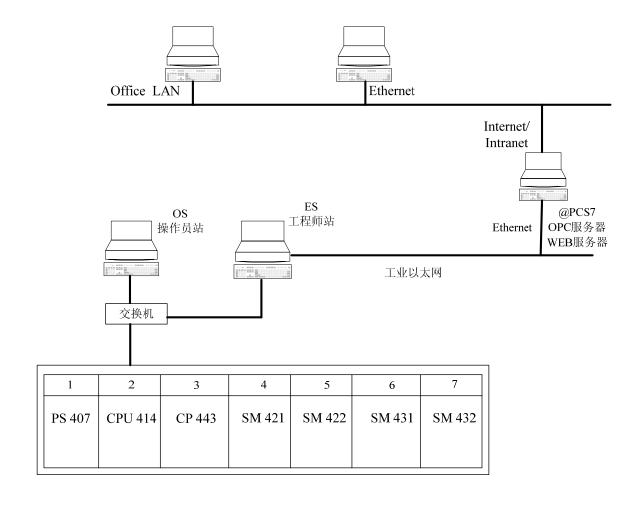
5、顺序控制系统

顺序控制系统流程图如下:



流程图中的符号注释:

- ΔT 反应釜内的升温速率
- ε 设定升温速率的误差
- T 反应釜内反应温度


6、搅拌釜式反应器整个系统 PI&D 图

系统 PI&D 图

五、自控方案的实施设计

1、硬件软件配置

网络结构图

用户可以通过该控制系统的 WEB 服务器浏览系统运行情况、各测控点设备参数等。 系统操作站和服务器之间采用 100M 标准工业以太网,充分开放的结构使得系统 具有很好的扩展性,可以与其他各种网络(MIS、ERP)进行连接。

通过 S7 CPU-414-3 有自带的 PROFIBUS-DP 接口,与远程站连接,实现与各部分分布式 I/O 站的连接。需提供的软件:

Microsoft Windows 2000 Professional+SP4 中文版 1 套

PSC7 软件英文版 操作员站 1 套

PSC7 软件英文版 工程师站 1 套

操作员站键盘的功能:

修改参数

调节回路

打印

工程师站键盘功能和软件内容:

键盘功能: 在线/离线修改参数、调节系统控制回路、打印各种报表等

软件内容: Windows 2000 Professional、WinCC 开发版、Step 7

计算机能使用的语言:

支持 IEC1131-5 所有五种 IEC 语言,并内置 32 位模拟仿真器。

梯形图(LAD)、功能块图(FBD)和语句表(STL)

网络通讯方式、通讯速度、最大通讯距离和通讯协议:

网络通讯方式:环形光纤工业以太网

通讯速度: 100M

最大通讯距离: 200Km

通讯协议: TCP/IP

系统对电源线、信号线的敷设和接地的要求:

输入电源(V): 220VDC

信号线的敷设:模拟量信号线需要尽量避免干扰源;光纤需要远离高温设备,不可有90度大拐角。

接地电阻(Ω): <4

该系统的特点:

- 1) 系统的核心设备选用了世界知名牌品的德国 SIEMENS 公司的 SIMATIC 系统,充分保证了整个系统的高可靠性、技术先进性、灵活扩展性、标准开放性及高性能价格比
- 2) 现场控制站、远程站的控制器和 I/O 信号接口模块设备均选用了高档的、集中式的 SIMATIC S7-400 系列控制器产品。该控制器采用了标准模块化和无风扇设计,结构坚固,性能可靠,所有模块均具有自动诊断功能,I/O 接口模块均可带电热插拔,便于在线维护。

- 3)用于连接系统操作员站和现场控制站的工业以太网采用了光纤电缆,充分保证了系统通讯的可靠性。该工业以太网采用了TCP/IP协议,通讯速率可达100Mbit/s。
- 4) 现场控制站所有数字量 I/O 信号都经过了继电器进行隔离和驱动,从而保证了所有数字量 I/O 信号之间是相互隔离的,这种 "24VDC 模块+继电器"的结构模式与"单一采用 220VAC 电压等级数字量 I/O 模块"的结构模式相比,具有更高的安全性、可靠性及性能价格比。
- 5) 系统中央控制室的 1 台操作员站和 1 台工程师站互为全冗余热备,其中任意一台操作站发生故障时,另一台操作站可接替其工作,提高了系统的可靠性。
- 6) 系统中央控制室操作员站设有多种操作级别,具有很好的操作安全性,并采用全中文界面设计,简单易用。
- 7) 系统具有很好的扩展性,并已充分考虑了扩展容量,可很方便地进行后续扩展,以适应更大规模的扩展需要。而且系统扩展或升级时,不需要更换现有设备,可为用户节约升级或扩展费用。另外,系统采用了标准数据接口,并应用了标准通讯网络,具有很好的开放性,可以很方便地与其他计算机系统相连接,构成一个管控一体化的全厂大系统。

2、I/O 模块接线图

编号	仪表代号	模拟输入端	模拟输出端	数字输入端	数字输出端
		口数	口数	口数	口数
1	FV204	1	-	-	_
2	FV205	1	-	-	-
3	FV206	1	-	-	-
4	FV207	1	-	-	-
5	FV208	1	-	-	-
6	FV209	1	-	-	-
7	S2	-	-	1	-
8	S4	-	-	1	-
9	S5	-	-	1	-

10	S6	-	-	1	-
11	阀门 FV211	1	1	-	-
12	阀门 FV212	1	1	_	_
13	阀门 FV213	1	1	_	_
14	阀门 TV214	1	1	_	_
15	阀门 TV208	1	1	_	_
16	阀门 LV209	1	1	_	_
17	开车开关	-	-	1	_
18	TC1	1	1	_	_
19	PC1	1	1	-	_
20	LC1	1	1	_	_
21	LC2	1	1	_	
22	LC3	1	1	_	_
23	热水开关	-	=	1	-
24	统计	17	14	6	-

注: "-"代表器件无此端口

3、控制器的选型

1) 所用 PLC 为 S7-400 系列

电源模块 (PS407/10A)

规格型号: PS 407 10A

额定输入电压: 110/230VAC

输入电压范围: 85~264VAC

额定电源频率: 60/50Hz

电源频率范围: 47~63Hz

额定输出电压: 5.1VDC 和 24VDC

额定输出电流: 5VDC: 10A, 24VDC: 或 1A

后备电池: 可选装 2 节 3.6V/1.9Ah

中央处理模块(CPU)

规格型号: CPU 414-3

RAM:384KB 用于程序

384KB 用于数据

装载存储器: 最大可扩至 64MB;

执行时间: 0.1us~0.6us

PROFIBUS-DP 波特率: 12Mbit/s;

工业以太网接口模块

规格型号: CP 443-1

通讯协议: 工业以太网 TCP/IP;

通讯接口: 15 针 Sub-D 和 RJ45 插座;

通讯波特率: 10/100Mbit/s;

数字量输入(DI)接口模块

规格型号: SM 421

输入点数: 16 点

输入信号: 24VDC

电气隔离: 光耦合器隔离

数字量输出(D0)接口模块

规格型号: SM 422

输出点数: 16 点

输入信号: 220VAC

电气隔离: 光耦合器隔离

模拟量输入模块(AI)

规格型号: SM 431

输入点数: 16 点

片数: 2

输入信号: 4~20mA

输入阻抗: 80Ω

分辨率: 14 位

电气隔离: 有

故障自动诊断: 有

其他相关参数可查阅手册。

2) 测量仪表及控制仪表的选型

阀门(FV204):恒星 ZIHP型气动单座调节阀

阀门(FV205): 恒星 ZJHP 型气动单座调节阀

阀门 (FV206): 恒星 ZJHP 型气动单座调节阀

蛇管内冷却水流量变送器:西门子 SITRANS FC MASSFLO DI25

阀门(FV207): 恒星 ZJHP 型气动单座调节阀

夹套内冷却水流量变送器: 西门子 SITRANS FC MASSFLO DI40

阀门(FV208): 恒星 ZJHP 型气动单座调节阀

阀门 (FV209): 恒星 ZJHP 型气动单座调节阀

反应釜温度传感器(TC1): 西门子 Pt100 (DIN IEC 751) 热电阻

反应釜压力变送器(PC1): 西门子 SITRANS P COMPACT

反应釜液位变送器(LC1): 西门子 超声波 xps-10 标准液位传感器

热水阀(S6): 恒星 金属硬密封蝶阀

采用的电气转换器均为 QZD1000i 型电气转换器

六、结束语

反应釜是一种常用的化学反应容器,通过控制其过程参数而达到控制其化学反应的外界条件,以提高产品的收率和质量,本文根据釜式反应器的工艺流程和控制要求,设计了一套基于西门子 PCS7 的过程控制系统。在明确控制要求并且确定了被控量之后,为了取得更好的控制效果,在深入分析各个被控量的影响因素、各个影响因素之间的制约关系、各个被控量的制约关系以及各个被控对象的特性的基础上,结合经典控制理论和先进控制方法,设计了一套控制方案。由于我们水平有限,肯定存在许多不足之处,对于工艺流程、对象特性、PCS7 系统组态软件以及其它的一些细节问题,还有待于现场进行试验测试,从而根据测试数据对被控对象更进一步了解的基础上,改进和修正控制方案,以期能非常出色实现控制功能,达到控制要求。